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Abstract

In many physical applications, one wishes to control the development of multi-dimensional instabilities around a one-
dimensional (1D) complex flow. For predicting the growth rates of these perturbations, a general numerical approach is
viable which consists in solving simultaneously the one-dimensional equations and their linearized form for three-dimen-
sional perturbations. In Clarisse et al. [J.-M. Clarisse, S. Jaouen, P.-A. Raviart, A Godunov-type method in Lagrangian
coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J. Comp. Phys. 198 (2004) 80–105],
a class of Godunov-type schemes for planar-symmetric flows of gas dynamics has been proposed. Pursuing this effort, we
extend these results to spherically symmetric flows. A new method to derive the Lagrangian perturbation equations, based
on the canonical form of systems of conservation laws with zero entropy flux [B. Després, Lagrangian systems of conser-
vation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the
entropy condition, Numer. Math. 89 (2001) 99–134; B. Després, C. Mazeran, Lagrangian gas dynamics in two dimensions
and Lagrangian systems, Arch. Rational Mech. Anal. 178 (2005) 327–372] is also described. It leads to many advantages.
First of all, many physical problems we are interested in enter this formalism (gas dynamics, two-temperature plasma equa-
tions, ideal magnetohydrodynamics, etc.) whatever is the geometry. Secondly, a class of numerical entropic schemes is
available for the basic flow [11]. Last, linearizing and devising numerical schemes for the perturbed flow is straightforward.
The numerical capabilities of these methods are illustrated on three test cases of increasing difficulties and we show that –
due to its simplicity and its low computational cost – the Linear Perturbations Code (LPC) is a powerful tool to under-
stand and predict the development of hydrodynamic instabilities in the linear regime.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems in fluid dynamics and plasma physics lead to stability studies of complex flows. Controlling
the development (the growth rates) of instabilities is even a key point in many experiments. As an example we
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Fig. 1. Example of the direct drive laser-driven inertial confinement fusion (ICF) of a perturbed DT layered target. The unperturbed flow
is spherically symmetric and we are interested in computing the time evolution of the perturbations amplitudes.
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can cite the case of laser-driven Inertial Confinement Fusion [30,10], a field in which Richtmyer–Meshkov
[37,32] and (ablative) Rayleigh–Taylor [36,42] instabilities have been widely studied in the last decade. In
the direct drive context (Fig. 1), a spherical shell of cryogenic DT filled with gas (DT) and surrounded by
an ablator (plastic) is accelerated by a direct laser irradiation. The shell is supposed to implode, compressing
and heating so much the light fuel that conditions for thermonuclear burn are reached. The implosion can be
presented as the succession of four different stages: the acceleration, the deceleration, the ignition and the burn
phases. The mean flow is spherically symmetric, but this one-dimensional flow is unstable with respect to
multi-dimensional perturbations (it is to be noticed that for planar of cylindrical targets, the phenomenology
is roughly the same). Such perturbations, initially seeded by the nonuniform energy deposition and by the
manufactory imperfections of the capsule itself, impose crucial limitations on symmetry and energy gain in
fusion pellet implosions and can even lead to the destruction of the capsule before ignition, so that controlling
the underlying mechanisms of such instabilities is a key issue for experiments designers. Indeed, the ablative
Rayleigh–Taylor instability is encountered whenever density and pressure gradients are opposed
(rp � rq < 0), a situation which occurs during the acceleration phase [28,41,2] at the outer surface of the abla-
tor, as well as during the deceleration one [39,43] at the inner shell interface. The compression of the light fuel
is also achieved thanks to multiple shock reflections, so that each DT interface suffers Richtmyer–Meshkov
instabilities.1

When dealing with such stability studies, a preliminary step consists in performing a linear stability analysis
of the basic flow. Most often, such an analysis cannot be performed analytically and must be investigated
numerically. Hence, there is a demand for devising efficient numerical methods for predicting linear perturba-
tion evolutions in complex flows. When the basic flow is one-dimensional – i.e. planar, cylindrically or spher-
ically symmetric – , as it is the case in ICF experiments (the above example is not limited to the spherically
symmetric case), the linearized stability problem reduces to computing multi-dimensional linear perturbations
about a 1D flow. This task may be achieved in a fairly inexpensive, reliable and accurate way by using 1D
numerical codes for computing simultaneously the basic flow and the modal components of its linear pertur-
bations. The underlying fluid code may either be Eulerian or Lagrangian. As it was done in [9], we shall focus
on the linear Lagrangian perturbation approach which appears to be well suited for studying the linear hydro-
dynamic stability of interfaces, but here the case of 1D spherically symmetric basic flows, solution to the gas
dynamics, is considered.

As it has been reported in a previous paper [9], this linear perturbation computation approach offers deci-
sive advantages over multi-dimensional ones. First of all, the computational burden needed for solving the 1D
equations for the basic flow and its perturbations is, at least, two (respectively four) orders of magnitude lower
1 We refer the reader to the above references (as well as included ones) for a detailed analysis of ICF flows as well as related
hydrodynamic instabilities.
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than that required by standard 2D (respectively 3D) methods. Thanks to this reduced computational cost,
‘‘converged’’ results of linear stability problems for complex flows may be produced in a very efficient manner.
Furthermore, computing linear perturbations avoids the accuracy limitations faced by 2D/3D computations
when dealing with perturbations of small relative amplitudes (see the recent work of Zalesak et al. [49]). In the
meantime, this approach is restricted to single mode linearized stability analysis. Therefore, the mode cou-
pling, the saturation and the nonlinear stages can not be performed with such a tool and we are led to use
direct simulations or other models. It is to be noticed that even for such studies, precise and converged single
mode results may be useful. Indeed, models used to predict the evolution of multi-mode perturbations in the
nonlinear stage are often based on the single mode growth rates in the linear phase. As an example we can cite
the Haan saturation model [20].

Linear perturbation codes (PANSY [21,31], DOC [40], MV [8,19], PERTUS [7],. . .) have been developed in
the 70s. They were all based on linearized vNR-type schemes [38]. Recently, this linear perturbation compu-
tation approach has been considered within the framework of nonlinear hyperbolic systems of conservation
laws [15,16,18,24,35]. In particular, Godunov-type schemes based on a linearization of the Roe method in
Lagrangian coordinates [34] have been proposed and have produced convincing results for single fluid flows
of gas dynamics and of magnetohydrodynamics [35]. In [9] multi-material schemes have been proposed for
planar-symmetric flows.

Pursuing this effort, we extend these results to spherically symmetric flows. Furthermore, a new method to
derive the Lagrangian perturbation equations, based on the canonical form of systems of conservation laws
with zero entropy flux [11,12], is also described. Using this method leads to many advantages. First of all,
many physical problems we are interested in enter this formalism (gas dynamics, two-temperature plasma
equations [25], ideal magnetohydrodynamics [3], etc.) whatever is the geometry. Secondly, a class of numerical
entropic schemes is available for the basic flow [11]. Last, linearizing and devising numerical schemes for the
perturbed flow is straightforward.

The plan of the present paper is as follows. In Section 2 we formally extend the two-dimensional
Lagrangian formulation of the gas dynamics equations described in [12] in three dimensions and in spherical
coordinates. Next, the obtained system is linearized about a 1D spherically symmetric flow. Thanks to a
spherical harmonics decomposition, we show that the multi-dimensional linear perturbations are solution
to an inhomogeneous system of 1D linear conservation laws. Numerical schemes to compute the basic
and the linearized flows are described in Section 3. Numerical results on three different test cases are pro-
posed in Section 4. We present in Section 4.1 an academic study which consists in a 1D perturbation of the
interface of a shock tube test case (Sod). Results of the Linear Perturbations Code (LPC) are compared to
those obtained with a Direct Method (DM), which is quite simple to implement in one dimension. In Sec-
tion 4.2, interfaces are initially tri-dimensionaly perturbed. This test case consists in the study of the linear
stability of an imploding shell (converging cumulative flow [27,5]) for which analytical solutions are avail-
able (smooth isentropic flow). In Section 4.3, we perform a numerical study of the Richtmyer–Meshkov
instability in spherical geometry. For this test case no analytical solution is available, and results are com-
pared to those obtained with the 2D AMR Eulerian code Hera [26]. Contrarily to the planar case, we
recover the fact that the growth factor is no longer linear: when the perturbed interface undergoes geomet-
rical convergence the perturbation growth is modified. We thus recover well-known modifications, usually
referred as Bell–Plesset effects [14].
2. Lagrangian linear perturbations for the gas dynamics equations in spherical coordinates

Within the framework of continuum mechanics, an inviscid fluid is solution to the following system
otqþr � ðquÞ ¼ 0;

otðquÞ þ r � ðqu� uÞ þ rp ¼ 0;

otðqeÞ þ r � ðqeuþ puÞ ¼ 0;

8><
>: ð1Þ
where q is the mass density, u the velocity, e the total specific energy and p the pressure. For subsequent devel-
opments, we also introduce the specific volume s ¼ 1

q. This system is closed with an arbitrary equation of state
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which gives the specific internal energy e ¼ eðs; SÞ ¼ e� 1
2
kuk2 as a function of the specific volume and entropy

S. This closure satisfies the Gibbs relation
T dS ¼ deþ p ds; ð2Þ

which defines the pressure and the temperature T.

2.1. Multi-dimensional Lagrangian formulation of the problem

The aim of this section is to rewrite the multi-dimensional Eulerian system (1) in Lagrangian spherical coor-
dinates. First of all we define the coordinates change and notations that will be used in the sequel. Then we
consider an arbitrary conservation law written in Eulerian coordinates and look for its equivalent in Lagrang-
ian coordinates (see Proposition 1). This result is finally applied to the complete system (1) considered here (see
Proposition 2).
2.1.1. Lagrangian spherical coordinates

Let ðt; r; h;/Þ denote the classical spatiotemporal Eulerian coordinate system, in the spherical basis
ðer; eh; e/Þ and let u ¼ ður; uh; u/Þt denote the velocity vector components. The spatiotemporal Lagrangian
spherical coordinate system ðt;R;H;UÞ, which we will denote by ‘‘Lag’’ for shortened notations, is defined
by the following fluid flow map
dt ¼ dt;

dr ¼ ur dt þ AdRþ E dHþ LdU;

dh ¼ uh
r dt þ B dRþ F dHþM dU;

d/ ¼ u/

r sin h dt þ C dRþ GdHþ N dU:

8>>><
>>>:

ð3Þ
For subsequent developments we also define
v ¼ ur;
uh

r
;

u/

r sin h

� �t
: ð4Þ
The jacobian matrix T of this coordinates change therefore reads
T ¼ 1 0t

v J

� �
where J ¼ oðr; h;/Þ

oðR;H;UÞ ¼
A E L

B F M

C G N

0
B@

1
CA: ð5Þ
The determinant of J reads
jJ j ¼ AðFN �MGÞ � BðEN � LGÞ þ CðEM � FLÞ; ð6Þ
but a more practical expression of this jacobian is also available. Indeed, on an elementary volume, the mass
conservation equation otqþr � ðquÞ ¼ 0, can be rewritten
qð0; LagÞR2 sin HdRdHdU ¼ qðt; rðt; LagÞ; hðt; LagÞ;/ðt; LagÞÞr2 sin hdr dhd/:
Thanks to this relation, we also have
jJ j ¼ det
oðr; h;/Þ
oðR;H;UÞ

� �
¼ qð0; LagÞR2 sin H

qðt; rðt;LagÞ; hðt; LagÞ;/ðt; LagÞÞr2 sin h
: ð7Þ
This relation will be used in the sequel. Also of interest is the comatrix of J, denoted ~J , which is given by
~J ¼
ðFN �MGÞ �ðBN � CMÞ ðBG� CF Þ
�ðEN � LGÞ ðAN � CLÞ �ðAG� ECÞ
ðEM � FLÞ �ðAM � BLÞ ðAF � BEÞ

0
B@

1
CA: ð8Þ
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The fluid particle trajectories satisfy
otr ¼ ur;

oth ¼ uh
r ; together with ðr; h;/Þjt¼0 ¼ ðR;H;UÞ:

ot/ ¼ u/

r sin h ;

8><
>: ð9Þ
2.1.2. Lagrangian form of an arbitrary Eulerian conservation law

We are now looking for the equivalent form, in the (t,R,H,U) coordinates, of the following Eulerian con-
servation law:
otaþrðr;h;/Þ � f ¼ s: ð10Þ
The result is given in Proposition 1.

Proposition 1. Let a, f and s be functions of ðt; r; h;/Þ and assume that the Eulerian conservation law (10) holds.
Then
otjR;H;U
ðjJ jaÞ þ rðR;H;UÞ � ð~J tðf � avÞÞ ¼ jJ js; ð11Þ
where jJ j, ~J and v are respectively defined by (7), (8) and (4).

The proof, which only uses the chain rule, is proposed in Appendix A.1.

2.1.3. Application to the gas dynamics system

The developed form of the system (1) in spherical coordinates reads
otðr2 sin h:V Þ þ orðr2 sin h:F ðV ÞÞ þ ohðr sin h:GðV ÞÞ þ o/ðr:HðV ÞÞ ¼ SðV Þ; ð12aÞ

where

V ¼ ðq; qur; quh; qu/; qeÞt;
F ðV Þ ¼ ðqur; qu2

r þ p; quruh; quru/; ðqeþ pÞurÞt;
GðV Þ ¼ ðquh; quruh; qu2

h þ p; quhu/; ðqeþ pÞuhÞt;
HðV Þ ¼ ðqu/;quru/; quhu/; qu2

/ þ p; ðqeþ pÞu/Þt;
SðV Þ ¼ ð0; sr; sh; s/; 0Þt;

8>>>>>><
>>>>>>:

ð12bÞ

and

sr ¼ 2pr sin hþ qr sin hðu2
h þ u2

/Þ;
sh ¼ pr cos hþ qrðu2

/ cos h� uruh sin hÞ;
s/ ¼ �qrðuhu/ cos hþ uru/ sin hÞ:

8><
>: ð12cÞ
To write the Lagrangian complete system, it is also convenient to introduce the following matrix
N ¼

0 0 0 0

2r sin h 0 �r sin h � quh �r sin h � qu/

r cos h r sin h � quh 0 �r cos h � qu/

0 r sin h � qu/ r cos h � qu/ 0

0
BBB@

1
CCCA: ð13Þ
Proposition 2. Using the conventional notation ðR;H;UÞ ¼ ð1; 2; 3Þ, the Lagrangian formulation of the gas

dynamics equations in spherical coordinates (12a)–(12c) reads
q0R2 sin HotU þ
X3

i¼1

oi

MiW

� 1
2
ðW;MiWÞ

� �
� jJ j

NW

0

� �
¼ 0; ð14Þ
where U ¼ ðs; ur; uh; u/; eÞt and W ¼ ðp;�ur;�uh;�u/Þt, the symmetric matrices Mi being given by
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Mi ¼

0 r2 sin h ~J i1 r sin h ~J i2 r ~J i3

r2 sin h ~J i1 0 0 0

r sin h ~J i2 0 0 0

r ~J i3 0 0 0

0
BBB@

1
CCCA;
where ~J is the comatrix of J given by (8). Moreover, with previous notations, we have
X3

i¼1

oiMi � jJ jðNþNtÞ ¼ 0: ð15Þ
The proof of this result is given in Appendices A.2 and A.3. System (9) must be added to complete the
Lagrangian formulation.

Remark 1. The derivation of the gas dynamics Lagrangian equations has been done previously in the cartesian
framework in [23,22]. Here, system (14) is written under the canonical form of Lagrangian systems with zero
entropy flux and is in fact the extension in three dimensions and in the spherical coordinates system of [11,12].
The main feature of such a formalism is that, for a system of p þ 1 conservation laws, fluxes are expressed
through matrix-vector products MiW, the p � p matrices Mi being symmetric and independent of the physical
variables.2 When devising numerical schemes it is therefore sufficient to study these p � p matrices which
reveals to be quite simpler than studying the ðp þ 1Þ � ðp þ 1Þ nonconstant jacobian matrices of the fluxes (we
refer the reader to [11] where the derivation of a class of numerical entropic schemes is developed in a general
context). Moreover, since this formalism applies to more complex systems (such as multi-dimensional two-
temperature plasma equations [25] as well as ideal magnetohydrodynamics [3] for instance), the methodology
described here in the context of Lagrangian linear perturbations will also apply to these models.
2.2. Lagrangian linear perturbations

For a long time, this multi-dimensional Lagrangian formalism was not used, and Lagrangian systems were
written as nonconservative PDEs with Eulerian differential operators. Linearizing such a system reveals to be
quite tricky (see [15,35,16,18,9]). Here, contrarily to those previous works, this can be done quite easily
because spatial partial derivatives are taken over fixed Lagrangian coordinates.

Let us define n ¼ ðr; h;/Þt, and denote by U0 the initial value for the system (14), that is to say
Uð0; R;H;UÞ ¼ U 0ðR;H;UÞ.

Let U0 and n0 ¼ ðr0; h0;/0Þt be respectively solution to (14) and (9) together with the initial conditions U 0
0

and n0
0 ¼ ðR;H;UÞ

t. The pair ðU 0; n0Þ is called hereafter the basic solution to the Lagrangian gas dynamics
equations in spherical coordinates. Now we want to study its linear stability with respect to perturbations
of the initial data. To do so we have to derive the linearized equations for the first order perturbations
ðU 1; n1Þ of the basic solution. These are obtained in the following standard way: let e be a small parameter.
We write
U ¼ U 0 þ eU 1 þ � � � ;
n ¼ n0 þ en1 þ � � � ;

(

and we look for the first order terms in e in systems (14) and (9).
After straightforward calculations, we get that U1 is solution to
q1
0R2 sin HotU 0 þ q0

0R2 sin HotU 1 þ
X3

i¼1

oi
ðMiWÞ1

� 1
2
ðW;MiWÞ1

 !
� jJ j0 ðNWÞ1

0

 !
� jJ j1 ðNWÞ0

0

 !
¼ 0;

ð16Þ
the one-dimensional cartesian frame these matrices are even proved to be constant [11].
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while n1 ¼ ðr1; h1;/1Þt is solution to
otr1 ¼ u1
r ;

r0oth
1 þ r1oth

0 ¼ u1
h;

r0 sin h0
ot/

1 þ ðr1 sin h0 þ r0h1 cos h0Þot/
0 ¼ u1

/:

8><
>: ð17Þ
In (16), it just remains to linearize matrix–vector products and scalar products: ðMWÞ1 ¼M0W1 þM1W0 and
ðW;MWÞ1 ¼ ðW0;M1W0Þ þ 2ðW1;M0W0Þ.

In addition, we have the linearized version of the divergence constraint (15) which reads
X3

i¼1

oiM
1
i � jJ j

1ðNþNtÞ0 � jJ j0ðNþNtÞ1 ¼ 0: ð18Þ
2.3. Application to a 1D spherically symmetric basic flow

From now on, we apply these results to the case of a 1D spherically symmetric basic flow and we assume
that the basic motion is radial, so that u0 ¼ u0

r~er. From (9) we therefore get h0 ¼ H and /0 ¼ U. From now on,
U and W will be defined by
U ¼ ðs; ur; eÞt and W ¼ ðp;�urÞt:
2.3.1. Lagrangian equations for the basic flow

At zeroth order, the jacobian matrix simply reads
J 0 ¼
A0 0 0

0 1 0

0 0 1

0
B@

1
CA with A0 ¼ oRr0 ¼ q0

0
R2

q0ðr0Þ2 ; ð19Þ
where (7) has been used to express A0. It means that B0 ¼ C0 ¼ E0 ¼ G0 ¼ L0 ¼ M0 ¼ 0 and F 0 ¼ N 0 ¼ 1.
Thanks to these simplifications on the components of the jacobian matrix, we get that the basic flow solves
otU 0 þ om
ðr0Þ2CW0

� 1
2
ðr0Þ2ðW0;CW0Þ

 !
¼ S0;

otr0 ¼ u0
r ;

8><
>: ð20aÞ
where the matrix C and the vector S are defined by
C ¼
0 1

1 0

� �
and S ¼ ð0; pomr2; 0Þt: ð20bÞ
In (20a), we have introduced the mass variable m, defined by dm ¼ q0
0R2 dR ¼ q0ðr0Þ2 dr.
2.3.2. Lagrangian equations for the linearized flow

Before giving the systems satisfied by the linear perturbations about this 1D basic flow, we detail how sim-
plifications occur on the first equation of (16), that is on the perturbed specific volume. From (16), and using
simplifications due to (19), the developed form of this equation reads
q0
0R2 sin Hots

1 þ q1
0R2 sin Hots

0 � oRðr2 sin h � urÞ1 � oRððF 1 þ N 1Þðr2 sin h � urÞ0Þ þ oHðB1ðr2 sin h � urÞ0Þ
þ oUðC1ðr2 sin h � urÞ0Þ � oHðA0r0 sin h0 � u1

hÞ � oUðA0r0 � u1
/Þ ¼ 0:
But we have oRðF 1 þ N 1Þ � oHB1 � oUC1 ¼ 0 which is a consequence of the linearized divergence constraint
(18). Using this property and the fact that the basic flow does not depend on H ¼ h0 and U ¼ /0, we get
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q0
0R2ots

1 þ q1
0R2ots

0 � oRðr2urÞ1 � F 1 þ N 1 þ h1 cos H
sin H

� �
oRðr2urÞ0 �

r0A0

sin H
ðoHðsin H � u1

hÞ þ oUu1
/Þ ¼ 0:

ð21Þ

Then we introduce the following transverse operators
r? � ðfH; fUÞt ¼
1

r0 sin H
ðoHðfH sin HÞ þ oUfUÞ; ð22aÞ

D?k ¼
1

sin H
oHðsin HoHkÞ þ 1

sin H
o2

UUk

� �
; ð22bÞ
and define the transverse dilatation K1 (which is the transverse divergence of the linearized displacement), and
X1, its temporal derivative:
K1 ¼ r? � ðr0h1; r0 sin H/1Þt; ð23aÞ
X1 ¼ otK

1 ¼ r? � ðu1
h; u

1
/Þ

t
: ð23bÞ
With these notations, one can easily check that
K1 ¼ 1

sin H
ðh1 cos Hþ sin HðF 1 þ N 1ÞÞ: ð24Þ
Eq. (21) rewrites
q0
0R2ots

1 þ q1
0R2ots

0 � oRðr2urÞ1 � K1oRðr2urÞ0 � ðr0Þ2A0X1 ¼ 0;
that is to say
ots
1 þ q1

0

q0
0

ots
0 � omðr2urÞ1 ¼ K1omðr2urÞ0 þ s0X1: ð25Þ
This kind of calculation can be done on each component of the system. Finally, setting
FðUÞ ¼
r2CW

� 1
2
r2ðW;CWÞ

 !
; ð26Þ
we find that ðU 1; r1;K1;X1Þ solves
otU 1 þ q1
0

q0
0

otU 0 þ omF
1 þ K1omF

0 ¼ R;

otr1 ¼ u1
r ;

otK
1 ¼ X1;

otððr0Þ2X1Þ ¼ �s0D?p1 þ ðr0Þ2omp0 � D?r1;

8>>>><
>>>>:

ð27aÞ
with R given by
R ¼ S0K1 þ S1 þ ðs0X1; 0;�s0p0X1Þt; ð27bÞ

the vector S being defined by (20b).

Note that since C is a constant symmetric matrix, we simply have
omF
1 ¼ om

ðr0Þ2CW1 þ 2r0r1CW0

�ðr0Þ2ðW0;CW1Þ � r0r1ðW0;CW0Þ

 !
:

Remark 2. A first integral on the linearized equation of the specific volume (25) is also available. After
straightforward manipulations, this equation can be rewritten
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ot s1 þ q1
0

q0
0

s0 � omððr0Þ2r1Þ � s0K1

� �
¼ 0; ð28Þ
so that this quantity is constant in time. In fact we have
s1 þ q1
0

q0
0

s0 � omððr0Þ2r1Þ � s0K1 ¼ 0: ð29Þ
This is due to the choice of the Lagrangian coordinates. At t ¼ 0, we have jJ j0 ¼ 1 and jJ j1 ¼ 0. Linearizing (7)
gives
q1
0

q0
0

� q1

q0
� 2r0r1

ðr0Þ2
� h1P cot gh0

" #
t¼0

¼ 0;
which rewrites, multiplying by s0 and using (24),
s1 � q1
0

q0
0

s0 � omððr0Þ2r1Þ � K1s0 þ s0

A0
ðA1 þ A0ðF 1 þ N 1ÞÞ

� �
t¼0

¼ 0:
Linearizing (6) immediately gives A1 þ A0ðF 1 þ N 1Þ ¼ 0 at t ¼ 0, so that (29) holds.

The linearized flow is therefore solution to the tridimensional equations (27a) and (27b). This kind of sys-
tem may then be reduced to a 1D system for the modal components of the linear perturbations. To achieve this
task, we introduce the spherical harmonics basis.

2.3.3. Spherical harmonics decomposition

Let us denote Pl,m the spherical harmonics basis of degree l and order m. Any linearized quantity f1 is there-
fore developed in the following way
f 1ðt; R;H;UÞ ¼
X1
l¼0

Xm¼l

m¼�l

~f l;mðt; RÞP l;mðH;UÞ;
and we have
D?P l;m ¼ �lðlþ 1ÞP l;m: ð30Þ

From now on, we omit the exponent relative to the basic flow, and indices relative to the modal compo-

nents. Using (30), it is then a simple matter to check that the modal component of degree l is solution to
ot
~U þ ~q0

q0
otU þ om

~Fþ ~KomF ¼ ~R;

ot~r ¼ ~ur;

ot
~K ¼ ~X;

otðr2 ~XÞ ¼ x½s~p � r2~romp�;

8>>>><
>>>>:

ð31aÞ
where x ¼ lðlþ 1Þ and
~R ¼ S ~Kþ ~S þ ðs~X; 0;�sp~XÞt: ð31bÞ

Therefore, the modal component of degree l is solution to an inhomogenous 1D system. Investigating the lin-
earized stability of the basic solution ðU ; rÞ with respect to longitudinal and transverse perturbations amounts
to solve the system (31a) and (31b) for various relevant modes l and to study the asymptotic behavior in time
of the corresponding solutions.

3. Numerical schemes

We propose in this section to derive numerical schemes for computing simultaneously the basic and the lin-
earized flows solution to (20a) and (20b) and (31a) and (31b). Introducing the geometrical parameter A ¼ r2,
its linearized expression ~A ¼ 2r~r and rewriting the flux F ¼AF with
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F ¼
CW

� 1
2
ðW;CWÞ

� �
; ð32Þ
it is found that these systems read

1. Basic flow:
otU þ omðAF Þ ¼ S; ð33aÞ
otr ¼ ur: ð33bÞ
2. Linearized flow:
ot
~U þ ~q0

q0

otU þ omðA~F þ ~AF Þ þ ~KomðAF Þ ¼ ~R; ð33cÞ

ot~r ¼ ~ur; ð33dÞ
ot

~K ¼ ~X; ð33eÞ
otðA~XÞ ¼ x½s~p �A~romp�; ð33fÞ
with S ¼ ð0; pomA; 0Þt and ~R ¼ S ~Kþ ~S þ ðs~X; 0;�sp~XÞt.
The interest of introducing the geometrical parameter A lies in the following:

Remark 3. It can be shown that these equations are exactly those one obtain for a planar-symmetric basic
flow, setting in that case x ¼ k2 where k is the Fourier mode number, A ¼ 1 and ~A ¼ 0 (see [9]). Using these
notations allows us to treat both cases in a generic way. Therefore, numerical schemes described in the
following sections will apply to both cases, with slight simplifications in the latter one.

The 1D domain ½Rmin;Rmax� is discretized in N cells Ij ¼ ½Rj�1
2
;Rjþ1

2
�, with R1

2
¼ Rmin and RNþ1

2
¼ Rmax. The

mass coordinates are therefore given by
m1
2
¼ 0;

mjþ1
2
¼ mj�1

2
þ Dmj; for j ¼ 2; . . . ;N ;

(

with Dmj ¼
R R

jþ1
2

R
j�1

2

q0Adr, that is to say
Dmj ¼
q0;jDRj in the planar case;

q0;j

R2

jþ1
2

þR
jþ1

2
R

j�1
2
þR2

j�1
2

3
DRj in the spherical case:

8<
: ð34Þ
Given a mesh size Dmj and a time step Dt, we define an approximation U n
j of Uðmj; tnÞ at the point ðmj; tnÞ:
Un
j ¼

1

Dmj

Z m
jþ1

2

m
j�1

2

Uðm; tnÞdm: ð35Þ
3.1. Numerical scheme for the basic flow

We focus here on the discretization of (33a) and (33b). The explicit Godunov-type scheme takes the follow-
ing form:
Unþ1
j ¼ U n

j �
Dt

Dmj
An

jþ1
2
F ðUÞnjþ1

2
�An

j�1
2
F ðUÞnj�1

2

� �
þ DtSn

j ; ð36Þ
where F ðUÞnjþ1
2

is the numerical flux.
Numerical flux F ðUÞnjþ1

2
. Since F is given by (32), with C a symmetric constant matrix, we see that

having determined W�jþ1
2
¼ ðp�

jþ1
2
;�u�

jþ1
2
Þt the last component of the flux � 1

2
ðW;CWÞ�jþ1

2
¼ p�

jþ1
2
u�

jþ1
2

is known.
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To compute u�
jþ1

2
and p�

jþ1
2

an approximate Riemann solver is used. A classical way to proceed is to use the lin-

earized Riemann invariants. Indeed, along the characteristic curves C� defined by dm ¼ �ðqcÞdt, where ðqcÞ is
the Lagrangian speed of sound, we have dp � ðqcÞdp ¼ 0 (see [1,17]) so that integration on these curves leads
to
ðp�
jþ1

2
� pjÞ þ ðqcÞjðu�jþ1

2
� ujÞ ¼ 0 along Cþ coming from the cell Ij;

ðp�
jþ1

2
� pjþ1Þ � ðqcÞjþ1ðu�jþ1

2
� ujþ1Þ ¼ 0 along C� coming from the cell Ijþ1:

(

Therefore,
p�
jþ1

2
¼ ðqcÞjpjþ1þðqcÞjþ1pj

ðqcÞjþðqcÞjþ1
þ ðqcÞjðqcÞjþ1

ðqcÞjþðqcÞjþ1
ðuj � ujþ1Þ;

u�
jþ1

2
¼ ðqcÞjujþðqcÞjþ1ujþ1

ðqcÞjþðqcÞjþ1
þ 1
ðqcÞjþðqcÞjþ1

ðpj � pjþ1Þ;

8<
: ð37Þ
which is the well-known Godunov acoustic Riemann solver. It is proved in [12] that the Godunov scheme to-
gether with the acoustic Riemann solver (37) is entropic under the CFL condition
max
j
ðqcÞj

Dt
Dmj
6 1: ð38Þ
Having defined the velocities of interfaces, Eq. (33b) is discretized in the following way:
rnþ1
jþ1

2
¼ rn

jþ1
2
þ Dtu�jþ1

2
: ð39Þ
Geometrical parameter An
jþ1

2
. Since we wish the equation on the specific volume to be equivalent at the dis-

crete level to the mass conservation
qnþ1
j ðV jþ1

2
� V j�1

2
Þnþ1 ¼ qn

j ðV jþ1
2
� V j�1

2
Þn; ð40Þ
its discretization is imposed. Indeed, we have the following:

Lemma 1. Let
An
jþ1

2
¼ 1 in the planar case; ð41aÞ

An
jþ1

2
¼

rnþ1
jþ1

2

� �2

þ rnþ1
jþ1

2

rn
jþ1

2
þ rn

jþ1
2

� �2

3
in the spherical case: ð41bÞ
The scheme (36)–(41) implies the mass conservation of the basic flow at the discrete level.

The proof is quite simple. Using (39), the first equation of (36) rewrites
snþ1
j ¼ sn

j þ
1

Dmj
An

jþ1
2
ðrnþ1

jþ1
2
� rn

jþ1
2
Þ �An

j�1
2
ðrnþ1

j�1
2
� rn

j�1
2
Þ

� �
;

so that (40) is trivially satisfied in the planar case. Inserting (41b) in this equation also leads to (40) after few
manipulations.

Geometrical source term Sn
j . It remains to give the expression of Sn

j . The choice we made is motivated by the
following observation: for a system initially at rest in an uniform pressure field, the velocity has to remain zero.
The following choice fulfill this requirement and is commonly used:
Sn
j ¼ 0;

p�
jþ1

2
þ p�

j�1
2

2

An
jþ1

2
�An

j�1
2

Dmj
; 0

 !t

: ð42Þ
3.2. Numerical scheme for the linearized flow

Now we focus on the discretization of (33c)–(33f) . Here again we use a Godunov-type scheme which is
somewhat close to the one presented in [9]. To avoid additional stability constraints, transverse contributions



S. Jaouen / Journal of Computational Physics 225 (2007) 464–490 475
are implicited. This will help us to deal with high mode numbers (x	 1) for which source terms may become
stiff. The scheme writes
3 Fo
~Unþ1
j ¼ ~U n

j �
~q0j

q0j

U nþ1
j � U n

j

� �
þ Dt~Rnþ1

j � Dt
Dmj

~An
jþ1

2
F ðUÞnjþ1

2
� ~An

j�1
2
F ðUÞnj�1

2

� �

� Dt
Dmj

An
jþ1

2

~F ðUÞnjþ1
2
�An

j�1
2

~F ðUÞnj�1
2

� �
� Dt

Dmj
An

jþ1
2
F ðUÞnjþ1

2
�An

j�1
2
F ðUÞnj�1

2

� �
~Knþ1

j ; ð43aÞ

~rnþ1
jþ1

2
¼ ~rn

jþ1
2
þ Dt~u�jþ1

2
; ð43bÞ

~Knþ1
j ¼ ~Kn

j þ Dt~Xnþ1
j ; ð43cÞ

ðA~XÞnþ1
j ¼ ðA~XÞnj þ xDt ðs~pÞnþ1

j �
ðA~rÞnjþ1

2
þ ðA~rÞnj�1

2

2

p�
jþ1

2
� p�

j�1
2

Dmj

" #
: ð43dÞ
Numerical flux ~F ðUÞnjþ1
2
. Since C is a constant matrix (see (20b)), the discrete form of the linearized flux ~F is

straightforward:
~F ðUÞnjþ1
2
¼

C ~W�
jþ1

2

�ðW�jþ1
2
ÞtC ~W�

jþ1
2

0
@

1
A ¼

�~u�
jþ1

2

~p�
jþ1

2

~p�
jþ1

2
u�

jþ1
2
þ p�

jþ1
2
~u�

jþ1
2

0
BB@

1
CCA; ð44Þ
with ~W�
jþ1

2
given by (37), with ~un

i and ~pn
i in place of, respectively, un

i and pn
i (for i ¼ j; jþ 1).

Geometrical parameter ~An
jþ1

2
and source term ~Rnþ1

j . They are defined by
~Rnþ1
j ¼

sn
j
~Xnþ1

j

~Sn
j þ Sn

j
~Knþ1

j

�sn
j pnþ1

j
~Xnþ1

j

0
BB@

1
CCA; ð45Þ
and
~An
jþ1

2
¼ 0 in the planar case; ð46aÞ

~An
jþ1

2
¼ 1

3
ð2rnþ1~rnþ1 þ rnþ1~rn þ rn~rnþ1 þ 2rn~rnÞjþ1

2
in the spherical case: ð46bÞ
As for the basic flow, this choice is motivated by the

Lemma 2. The scheme (43)–(46) implies the mass conservation of the linear flow (28) at the discrete level.

This implies that if (29) is true at t ¼ 0, it will be true at any time tn > 0. The proof is quite simple and is not
detailed here.

Remark 4. Once ~Xnþ1
j is known, the discrete equations can be solved explicitly as we explain now. In order to

solve (43d) we use the fundamental principle of thermodynamics (2) written in terms of the independent
variables s, e, u and p:
sdp ¼ ðC� cÞp dsþ Cde� Cudp; ð47Þ

where c and C are respectively the adiabatic exponent and the Grüneisen coefficient.3 Therefore, omitting the
nþ 1 exponent,
s~p ¼ ðC� cÞp~sþ C~e� Cu~u:
Using (43a)–(43c) it is easily shown that Eq. (43d) can be rewritten
ðAnþ1
j � xDtajÞ~Xnþ1

j ¼ ðA~XÞnj þ xDtbj;
where aj and bj can be computed explicitly.
r a perfect gas law, C ¼ c� 1, but numerical schemes described here apply in a more general case.



476 S. Jaouen / Journal of Computational Physics 225 (2007) 464–490
3.3. Extension to second-order accurate schemes

For increasing the order of accuracy of the above Godunov-type methods, a two steps Lax–Wendroff-type
scheme [29] together with flux limiting techniques has been used. The momentum and the energy equations of
the basic flow can be manipulated to give, in a nonconservative form:
ou
ot þA op

om ¼ 0;
op
ot þ ðqcÞ2 oAu

om ¼ 0:

(

A Lax–Wendroff-type scheme is applied over a half-time step Dt/2 (we refer to [1] for further details) thus giv-
ing a second-order approximation of the velocity and the pressure at each interface mjþ1

2
, respectively, denoted

u�;LW
jþ1

2

and p�;LW
jþ1

2

. This solver, say u�;HI and p�;HI , is connected to the first order one, u�;LO and p�;LO, via a Van Leer

flux limiter U (cf. [44]):
u�;HI ¼ Uu�;LO þ ð1� UÞu�;LW ;

p�;HI ¼ Up�;LO þ ð1� UÞp�;LW :

�
ð48Þ
In an extended form, the second-order accurate solver for the basic flow writes
u�
jþ1

2
¼ ðqcÞjujþðqcÞjþ1ujþ1

ðqcÞjþðqcÞjþ1
þ U 1

ðqcÞjþðqcÞjþ1
ðpn

j � pn
jþ1Þ þ ð1� UÞ Dt

2
Ajþ1

2

pn
j�pn

jþ1

mjþ1�mj
;

p�
jþ1

2
¼ ðqcÞjpjþ1þðqcÞjþ1pj

ðqcÞjþðqcÞjþ1
þ U

ðqcÞjðqcÞjþ1

ðqcÞjþðqcÞjþ1
ðun

j � un
jþ1Þ þ ð1� UÞ Dt

2

ðqcÞ2jþðqcÞ2jþ1

2

Ajun
j�Ajþ1un

jþ1

mjþ1�mj
;

8><
>: ð49Þ
with A ¼ 1 or r2 whether we consider the planar or the spherical geometry and
mjþ1 � mj ¼
q0;jðRjþ1

2
� RjÞ þ q0;jþ1ðRjþ1 � Rjþ1

2
Þ in the planar case;

q0;j

R3

jþ1
2

�R3
j

3
þ q0;jþ1

R3
jþ1
�R3

jþ1
2

3
in the spherical case:

8<
:

As for the first order accurate scheme, the time step is still given (38). Here we have chosen the Van Leer
limiter (see [44]) which is defined by
U ¼ 0 if Djþ1
2
P 0;

U ¼ 1�max 0;min 1; 2aj; 2ajþ1;
ajþajþ1

2

	 
� �
otherwise;

(
ð50Þ
where aj ¼ Dj

D
jþ1

2

and ajþ1 ¼ Djþ1

D
jþ1

2

, with Dj, Djþ1
2

and Djþ1 given by
Djþ1
2
¼ ujþ1�uj

mjþ1�mj
; Djþ1 ¼

u
jþ3

2
�u

jþ1
2

Dmjþ1
; Dj ¼

u
jþ1

2
�u

j�1
2

Dmj
:

Since the linearized flow satisfies a linear system of conservation laws, we could infer that no flux limiting
techniques should be necessary for computing the linear perturbation. The situation is in fact much more com-
plex, because the perturbed flow is solution to a linear system of conservation laws with discontinuous coef-
ficients. In practice the same limiter as for the basic flow is applied. Therefore, the second-order riemann solver
for computing the linearized solution corresponds to (49) with ~un

i and ~pn
i in place of, respectively, un

i and pn
i (for

i ¼ j; jþ 1).

4. Numerical results

In order to validate this method, we compare numerical results we obtain to analytical solutions when these
ones are available (Section 4.2). But most often, we are led to perform direct numerical simulations on the
perturbed flow U e and to use a postprocessor to get back to linear perturbations. This is what is done in Sec-
tions 4.1 and 4.3.
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4.1. Monodimensional perturbation

The first test case we consider (maybe the simplest) is the case of a monodimensional perturbation. Since
the perturbed flow remains one dimensional, we compute separately, with two runs, the unperturbed UðR; tÞ
and the perturbed U eðR; tÞ flows using the numerical scheme described in Section 3.1. Then we compare
U eðR;tÞ�UðR;tÞ

e with ~UðR; tÞ obtained with the LPC. Such a procedure is referred in the sequel as the Direct Method
(DM).

Let the basic flow U be solution to the one dimensional Sod shock tube. The initial condition for U is given
by U 0ðR < RintÞ ¼ U l and U 0ðR > RintÞ ¼ Ur with Rint ¼ 0:5 and
4 Th
results
U l ¼
ql ¼ 1;

ul ¼ 0;

pl ¼ 1;

8><
>: and U r ¼

qr ¼ 0:125;

ur ¼ 0;

pr ¼ 0:1;

8><
>:
together with a perfect gas equation of state with c ¼ 1:4. Assume that the interface position is perturbed:
Re

int ¼ Rint þ e with e
 1 in order to stay in a linear regime. At the continuous level, we have
U e

0ðRÞ ¼ U 0ðR� eÞ.

4.1.1. Initial conditions

Initial conditions for the DM. Let k be the index such that at the discrete level we have Rint ¼ Rk�1
2

and
assume that 0 < e < Rkþ1

2
� Rk�1

2
(the amplitude of the radial perturbation is smaller than the mesh size).

The initial condition for the perturbed flow is discretized in the following way:
U e
0;j6¼k ¼ U 0;j and U e

0;k ¼ U 0;k � e
U 0;k � U 0;k�1

Rkþ1
2
� Rk�1

2

;

so that the discrete Lagrangian coordinates remain the same for the unperturbed and the perturbed flow. With
such a choice the difference U eðR;tÞ�UðR;tÞ

e can easily be computed. For applications we have chosen e ¼ 10�5.
Initial conditions for the LPC. The initial condition used for the LPC is simply ~U 0ðRÞ ¼ 0 and
~r0;j�1
2
¼

1 if j ¼ k;

0 otherwise:

�

The transverse displacement field, which is linked to ~r0ðRÞ through Eq. (29) is given by
~K0;j ¼ �q0;j

ðA~rÞ0;jþ1
2
� ðA~rÞ0;j�1

2

Dmj
:

4.1.2. Numerical results

The domain ½0; 1� is discretized on 1000 regular cells4 and for both methods the second order scheme has
been used. Radial perturbations (~rðR; tÞ for the LPC code and reðR;tÞ�rðR;tÞ

e for the DM) for the planar and the
spherical cases are respectively given in Figs. 2 and 3 at time t ¼ 0:25.

Remark 5. Since the perturbed solution is just translated from e in the planar case, we have, at the continuous
level reðRþ e; tÞ ¼ r0ðR; tÞ þ e. On the other hand, a Taylor expansion yields reðRþ e; tÞ ¼ reðR; tÞ þ eoRreðR; tÞ
so that, up to the first order in e we have
reðR; tÞ ¼ r0ðR; tÞ þ e 1� or0ðR; tÞ
dR

� �
:

Therefore, knowing the r0ðR; tÞ profile allows us to compute the first order perturbation in the planar case.
This one is also plotted in Fig. 2(right).
e truncature error of the computed solution U e � U has to be at least one or two order of magnitude lower than e to give relevant
, so that a minimum of 1000 cells is required here to apply the DM.



Fig. 3. Monodimensional perturbation in the spherical geometry at t ¼ 0:25. Left: unperturbed density profile qðR; tÞ. Right: comparison
of the radial perturbation obtained with the LPC code and with the direct method (DM).

Fig. 2. Monodimensional perturbation in the planar geometry at t ¼ 0:25. Left: unperturbed radial position rðR; tÞ. Right: comparison of

the radial perturbation obtained with the LPC code and with the direct method (DM). The ‘‘pseudo-analytical’’ solution 1� or0ðR;tÞ
oR is also

plotted.
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We see in Fig. 2(left) that on the left of the contact discontinuity (R < Rint), rðR; tÞ increases more rapidly
than the function r ¼ R, so that 1� oRr0ðR; tÞ < 0. On the contrary, for R > Rint, we have rðR; tÞ ’ aR with
a < 1. Therefore, the linear perturbation is almost constant and positive. This is what Fig. 2(right) shows.
In the spherical case, the situation is much more complex since a convergence effect appears (the perturbed
solution is not a translation of the unperturbed one) and Remark 5 does not apply. Comparison of LPC
results with DM ones is shown in Fig. 3.

In both cases, profiles for the radial perturbations are close. We also expect the radial position rðR; tÞ to be
continuous so that the radial perturbation is almost a function.5 Here the overshoot (undershoot) at the
5 This is not the case of ~UðR; tÞ which is a measure (see [4,15]). In particular, Dirac masses appear on ~UðR; tÞ wherever UðR; tÞ is
discontinuous.
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interface is due to wall heating: the density of the basic flow is under-estimated at the interface and this results
in these overshoot (undershoot) on the linear perturbation.

Remark 6. We have noticed that the DM approach is very sensitive to the numerical scheme used, especially
when dealing with second order schemes. We can easily convince ourselves that small oscillations (typically of
the order of e) on the basic flow have a dramatic effect when computing U eðR;tÞ�UðR;tÞ

e . In a recent paper, Zalesak
et al. [49] have studied the limits of the DM approach. They show that second order schemes are a source of
nondifferentiability of the numerical algorithms which can make this approach incompatible with the accurate
modelling of small amplitude perturbations. Their conclusions argue for the LPC approach.

This test case shows that the LPC code gives quite the same results as those one obtain using a Direct
method (even if a great care is needed for the latter). Nevertheless, when dealing with multi-dimensional per-
turbations, the DM becomes quite complex to use. We show on the two following test cases that the LPC
works as well in this context.

4.2. Isentropic implosion of a perturbed shell

We consider here the case of an isentropic compression of a shell filled with a perfect gas initially at rest for
which analytical solutions are available. Solutions for the basic flow have been described by Kidder [27], and
analytical solutions for the perturbed flow can be found in [5]. Let index 1 (respectively 2) denote the different
variables defined on the internal (respectively external) surface of the shell.

4.2.1. Analytical solution for the basic flow

The initial condition is given by:
qðR; 0Þ ¼ qc�1
2
ðR2�R2

1
Þþqc�1

1
ðR2

2
�R2Þ

R2
2
�R2

1

� � 1
c�1

;

uðR; 0Þ ¼ 0;

pðR; 0Þ ¼ p2
q
q2

� �c
;

8>>>><
>>>>:
where c ¼ 5
3

is the adiabatic exponent. Let rðR; tÞ denote the radius of a fluid particle at time t such that that
rðR; 0Þ ¼ R. We will also denote r1 ¼ rðR1; tÞ and r2 ¼ rðR2; tÞ. For boundary conditions, a pressure law is im-
posed on both the internal and external surfaces:
pðr1; tÞ ¼ p1hðtÞ�3c and p2ðr2; tÞ ¼ p2hðtÞ�3c
;

where hðtÞ is the self-similar motion law, i.e. rðR; tÞ ¼ RhðtÞ, and is defined by
hðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

t2
c

s
with tc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2c
R2

2 � R2
1

e2 � e1

s
;

tc being the collapse time and e the internal energy. The self-similar solution is therefore given by8

qðr; tÞ ¼ 1

hðtÞ3 q r
hðtÞ ; 0
� �

;

uðr; tÞ ¼ � rt
t2c hðtÞ2 ;

pðr; tÞ ¼ p2
qðr;tÞ
q2

� �c
:

>>>><
>>>>:
4.2.2. Analytical solution for the perturbed flow

The basic flow being defined, we now want to perturb the internal and external surfaces of the shell. There-
fore, we assume that radial positions are slightly perturbed in accordance with the following law (l is the spher-
ical harmonic degree):
~rðR; 0Þ ¼ alRl�1 þ blR
�l�2; for R1 6 R 6 R2; ð51Þ



480 S. Jaouen / Journal of Computational Physics 225 (2007) 464–490
together with the boundary conditions ~rðR1; 0Þ ¼ ~R1 and ~rðRr; 0Þ ¼ ~R2. Other variables are zero, except the
transverse displacement field, which is linked to ~rðR; 0Þ through Eq. (29). It is shown in [5] that the analytical
solution for the radial displacement field is given by
Table
Experi

N

10
20
40
80

160
320
640

1280

N is th
~rðr; tÞ ¼ alrl�1g1ðt=tcÞ þ blr
�l�2g2ðt=tcÞ;
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4.2.3. Numerical results

For the numerical simulations we have chosen R1 ¼ 0:9;R2 ¼ 1; p1 ¼ 106; p2 ¼ 108 and q2 ¼ 10�4. From the
isentropic condition p1s

c
1 ¼ p2s

c
2 we get the initial value for q1.

Remark 7. The experimental order of convergence in space of the second order accurate scheme (49) and (50)
has been measured on this test case at time t ¼ 0:5tc. It is given in Table 1. Second order in space is almost
achieved.

Now, we present the results obtained for three kinds of perturbations. The domain has been divided in 1000
regular cells, so that converged results have been obtained, and the final time is tf ¼ 0:999tc. In the first case,
the internal surface is not perturbed and we choose ð~R1; ~R2Þ ¼ ð0; 1Þ. Perturbation amplifications at the inter-
nal and external surfaces computed with the Linear Perturbation Code (LPC) presented here are compared
with the analytical solutions for the mode numbers l ¼ 4 in Fig. 4 and l ¼ 100 in Fig. 5.

In the second and third cases, both surfaces are perturbed: ð~R1; ~R2Þ ¼ ð1; 0:55Þ and ð~R1; ~R2Þ ¼ ð2:848738; 1Þ.
For the initial condition ð~R1; ~R2Þ ¼ ð1; 0:55Þ, comparisons of the perturbation amplifications at the internal
and external surfaces are given in Fig. 6 for the mode number l ¼ 4 and in Fig. 7 for l ¼ 100, while for
the initial condition ð~R1; ~R2Þ ¼ ð2:848738; 1Þ they are given in Fig. 8 for the mode number l ¼ 8. The effects
of convergence are clearly seen on these figures. Indeed, since the acceleration is centripetal, the internal sur-
face is Rayleigh–Taylor stable, but oscillating while the external surface is unstable. In a convergent geometry
an aspect ratio effect is expected. This is retrieved here, and in the last case the external surface is even stabi-
lized for t < 0:99tc. For all these test cases an excellent agreement between the computed and the analytical
solutions is observed.

4.3. Richtmyer–Meshkov instability

This test case is devoted to the Richtmyer–Meshkov instability [37,32] for a spherically convergent/diver-
gent flow. These instabilities occur when a shock wave collides with a perturbed interface separating two
1
mental order of convergence (EOC) of the second order accurate scheme (49) and (50)

k q�qex

qex k1 EOC j r1�rex
1

rex
1
j EOC j r2�rex

2

rex
2
j EOC

5.7349e�07 . . . 3.5459e�02 . . . 1.9195e�03 . . .

1.9611e�07 1.55 1.0403e�02 1.77 4.8663e�04 1.98
5.3986e�08 1.86 2.7979e�03 1.89 1.2890e�04 1.92
1.3927e�08 1.95 7.3404e�04 1.93 3.4413e�05 1.91
3.5015e�09 1.99 1.9200e�04 1.93 9.3150e�06 1.89
8.7337e�10 2.00 4.9600e�05 1.95 2.4800e�06 1.91
2.2309e�10 1.97 1.2021e�05 2.05 5.8562e�07 2.08
5.5962e�11 1.99 3.0487e�06 1.98 1.4982e�07 1.97

e number of cells used in simulations.
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different fluids. It has been widely studied in the planar case (see [45–47] and included references) and analyt-
ical solutions exist: for sufficiently small perturbations, the theory predicts that the amplitude of these pertur-
bations grows linearly in time. This has been recovered using LPC in [9]. In a spherical geometry the situation
is more complex, since convergence effects (referred as Bell–Plesset effects [14]) play an important role in the
development of the instability. As a consequence analytical solutions are not yet available, except in very par-
ticular cases (see the work of Mikaelian [33] in the case of incompressible fluids) and the problem has to be
investigated numerically (see for instance [13] and included references). For this test case, results are compared
to 2D axisymmetric direct numerical simulations performed with the AMR Eulerian code Hera (for an over-
view of the features of this platform we refer the reader to [26]): the multi-fluid Euler equations are solved on a
cartesian mesh ðr; zÞ using a Lagrange + remap scheme6 together with an alternate direction splitting. In the
6 After a Lagrangian step, quantities are projected back onto the fixed Eulerian grid (see [17] pp. 192–195 for the description of such a
method).



-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

perturbation code
analytical solution

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

perturbation code
analytical solution

Fig. 6. Internal and external modal radii for the mode l ¼ 4. Initial condition: ð~R1; ~R2Þ ¼ ð1; 0:55Þ.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

perturbation code
analytical solution

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0.9  0.91  0.92  0.93  0.94  0.95  0.96  0.97  0.98  0.99

perturbation code
analytical solution

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

perturbation code
analytical solution

Fig. 7. Internal and external modal radii for the mode l ¼ 100. Graphs displayed on top right and bottom are displayed using a
logarithmic scale. Initial condition: ð~R1; ~R2Þ ¼ ð1; 0:55Þ.

482 S. Jaouen / Journal of Computational Physics 225 (2007) 464–490



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

LPC (internal surface)
analytical solution (internal surface)

LPC (external surface)
analytical solution (external surface)

 0.1

 1

 10

 0.95  0.955  0.96  0.965  0.97  0.975  0.98  0.985  0.99  0.995

LPC (internal surface)
analytical solution (internal surface)

LPC (external surface)
analytical solution (external surface)

Fig. 8. Internal and external modal radii for the mode l ¼ 8. Graph displayed on right is displayed using a logarithmic scale. Initial
condition: ð~R1; ~R2Þ ¼ ð2:848738; 1Þ.

S. Jaouen / Journal of Computational Physics 225 (2007) 464–490 483
r-direction (respectively, z-direction), the scheme used in the Lagrangian phase is the one described in Section
3.1 with A ¼ r (respectively, A ¼ 1) together with the second order TVD solver proposed in Section 3.3. For
mixed cells this scheme is applied on global quantities and a subzonal model (in the spirit of [1]) is used to
update partial ones. For the remapping phase a Youngs’ interface reconstruction algorithm [48] is applied.

4.3.1. Initial conditions
Initial conditions for the LPC. Initial conditions for the basic flow are defined by
U 0
0ðRÞ ¼

U s
e if 4 < R < 10;

U u
e if Ri < R < 4;

U i if 0 < R < Ri:

8><
>:
The interface between the internal sphere and the external shell is located at Ri ¼ 3, while a shock, located at
R ¼ 4 is propagating in the external shell towards the center. Both fluids are governed by perfect gas laws
whose adiabatic exponents are ci ¼ 3 and ce ¼ 1:5. The states U u

e and Ui are given by
U u
e ¼

qu
e ¼ 1;

uu
e ¼ 0;

pu
e ¼ 1;

8><
>: Ui ¼

qi ¼ 4;

ui ¼ 0;

pi ¼ 1:

8><
>:
We denote by s the strength of the incident shock, defined by s ¼ 1� pu
e

ps
e
. Once this parameter is specified, we

easily determine the shocked state U s
e using the Rankine–Hugoniot jump conditions. In the present applica-

tion s ¼ 0:5, so that the Mach number is approximately equal to 1.35.
Initial conditions for the linearized flow are ~U 0ðRÞ ¼ 0 and
~rðR; 0Þ ¼ expð�10jR� Rij2Þ:

The transverse displacement field, which is linked to ~r0ðRÞ through Eq. (29) is given by
~K0;j ¼ �q0;j

ðA~rÞ0;jþ1
2
� ðA~rÞ0;j�1

2

Dmj
:

Such initial values for the perturbed flow correspond to a geometrically perturbed material contact disconti-
nuity as it was explained in [9].

Initial conditions for the 2D axisymmetric simulation. For the 2D axisymmetric simulation, the basic flow is
also given by the same states, but the interface between Ui and Uu

e is slightly perturbed by a Legendre mode
number l of amplitude a0

l :
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Re
i ðh; 0Þ ¼ Ri þ a0

l P lðcos hÞ;

where P l is the Legendre polynomial of degree l and H the angle between the radial direction and the symme-
try axis. Knowing the equation of the interface the code is able to compute the volume fraction of each fluid in
mixed cells. Here a0

l ¼ 0:2 has been chosen.

Remark 8. In order to compare LPC and Hera results, we must make sure that in the 2D simulations we stay
in the linear regime and that results are independent of the initial value a0

l . Generally (see [20] for instance),
instabilities are considered to evolve linearly in time if
a0
l < 0:1k with k ’ 2p

Ri

l
the wavelength of the perturbation: ð52Þ
As it is shown in [49], from a numerical point of view this criterion is not sufficient when investigating linear
growth rates throughout 2D direct simulations. Indeed, pure single mode computations are not possible to
handle with such tools and noninitialized modes necessarily appear (they may be seeded by round off errors
for instance). Since the flow is intrinsically unstable these are not damped and mode coupling may occur. For
these reasons, the instability will be considered in its linear regime if the amplitude of the noninitialized modes
am6¼lðtÞ always remains lower than the amplitude alðtÞ. We will also check that once this criterion is satisfied,
results are independent of the choice of a0

l .
4.3.2. Numerical results

For the LPC code, 2000 cells have been used and converged results have been obtained for all mode num-
bers less than 100, while in the 2D calculations, a 1280� 640 mesh of level 0 has been used on a half sphere.
The domain R < 4 is refined by a factor 3 so that this would lead to 7,372,800 cells without AMR. With such a
mesh quasi-converged results are obtained for sufficiently low mode numbers (for l 6 20).

The interface radius and velocity versus time are given in Fig. 9. At t ’ 0:6 the interface is impulsively accel-
erated by the incident shock. Contrarily to the planar case, after the shock interaction, the interface velocity is
not constant but increases. This is due to the convergent symmetry. At t ’ 2:1 the convergent shock is reflected
at the center and a divergent shock propagates in the internal sphere. It interacts a second time at t ’ 2:9 with
the interface. This gives rise to second transmitted and reflected waves.

An unperturbed simulation has also been performed in order to compare the basic flows computed by both
methods. A very good agreement is observed in Fig. 10(left) where density profiles at three different times are
represented. Two dimensional perturbed density plots are also given in this figure (right) for the Legendre
mode number l ¼ 10.
Fig. 9. Richtmyer–Meshkov instability. Left: interface radius versus time. Right: interface velocity versus time.
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S. Jaouen / Journal of Computational Physics 225 (2007) 464–490 485
In the 2D simulations, thanks to the Youngs’ interface reconstruction, the interface Re
i ðh; tÞ can be numer-

ically tracked and post-processed. Since
Re
i ðh; tÞ ¼

X1
m¼0

amðtÞP mðcos hÞ;
using the orthogonality property of the Legendre polynomials [6] one gets
alðtÞ ¼
2lþ 1

2

Z 1

�1

Re
i ðh; tÞP lðcos hÞdðcos hÞ:
Interface
Reflected shock

Transmitted shock(convergent)

Interface at t=0 0 1 2 3 4 5 6 7 8 9 10  2  3  4  5  6
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The amplitude of each mode is therefore recovered by evaluating this integral. As was said in Remark 8, we
checked that the amplitude of the noninitialized modes am 6¼lðtÞ always remain lower than the amplitude alðtÞ so
that the instability can be considered in its linear regime. We can therefore compare the growth factors al

a0
l

obtained by both methods (for the LPC approach, it is simply defined by ~rðRi; tÞ). This is done in Fig. 11
for Legendre mode numbers l ¼ 2; 3; 5; 6; 10 and 20. Before the shock front hits the interface (which happens
at t ’ 0:6), the growth factor of the perturbation remains constant. When this front interacts with this inter-
face, its theoretical value is ð1� Du=rÞ (see [45] for instance), where R is the Eulerian speed of the incident
shock wave and Du the velocity jump of the interface due to the shock interaction. Then the amplitude of
the perturbation grows. In a planar geometry and for an infinite domain, it theorically grows linearly. This
is almost the case right after the interaction, but convergence effects (known as Bell–Plesset effects [14]) rapidly
reduce the growth factor. This one begins to decrease before the interface undergoes a new shock interaction
(divergent shock coming from the center) at t ’ 2:9. A phase inversion (which corresponds to negative growth
factors) is even seen for high mode numbers (here for l ¼ 20). We observe a good agreement between both
approaches, especially for low mode numbers. We have also observed that the more we refine the 2D mesh,
closer to the (converged) 1D linear perturbation results we are.
0.7

0.8

0.9

 1

1.1

1.2

1.3

1.4

1.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

LPC - mode l=5
Hera - A0=0.2

Hera - A0=1e-2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

LPC - mode l=20
Hera - A0=0.2

Hera - A0=1e-1
Hera - A0=1e-2

Fig. 12. Richtmyer–Meshkov instability. Comparison of the growth factors al
a0

l
versus time obtained with Hera for different values of a0

l .
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l ¼ 10�2. Right: mode l ¼ 20 with a0
l ¼ 0:2, a0
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l ¼ 10�3. LPC results are also plotted.
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As was said in Remark 8, we have checked that Hera results were independent of the initial amplitude a0
l

(provided a0
l 6 0:2) for sufficiently small mode numbers (here l 6 10). This can be seen in Fig. 12(left) where

results obtained with a0
l ¼ 0:2 and a0

l ¼ 10�2 for l ¼ 5 are compared. As l increases, the initial value a0
l ¼ 0:2

begins to be too great (for l > 10 the heuristic criterion (52) is not satisfied). This is one of the reasons why
differences observed in Fig. 11 are more important for l ¼ 20 than for smaller mode numbers. Indeed, choos-
ing a smaller value of a0

l reduces the discrepancies between both approaches (see Fig. 12(right) where results
obtained with a0

l ¼ 0:2, a0
l ¼ 10�1 and a0

l ¼ 10�2 for l ¼ 20 are plotted). Another reason is that 2D results are
not converged for such mode numbers: the more l increases, the more the mesh needs to be refined. The same
computation has been done for l ¼ 20 and a0

l ¼ 10�2 on the preceding mesh (referenced mesh) refined by a
factor 2 (without AMR this would lead to 29,491,200 cells). Results are plotted in Fig. 13 where an excellent
agreement between both approaches is observed. This study shows that 2D direct computations must be han-
dled with a great care and that they can rapidly become very expensive (the refined computation – on mesh 2 –
lasts about 5 h on 128 cpu).

The interest of the linear perturbation approach for such studies becomes very clear: converged results are
produced in a very efficient manner (a run lasts less than 1 min on a standard PC here) while avoiding the
accuracy limitations faced by 2D direct computations when dealing with perturbations of small relative
amplitudes.

5. Conclusion

A purely Lagrangian method dedicated to linear perturbation studies about 1D spherically symmetric flows
governed by the gas dynamics equations has been described. The structure of multi-dimensional systems which
extends results of Després et al. [11,12] in spherical coordinates has been fully exploited. It is shown that within
this formulation, systems satisfied by the basic and the perturbed flows as well as accurate and robust numer-
ical schemes may be produced in a straightforward manner. Beyond these advantages, the main interest of this
approach lies in the fact that principles involved here immediately apply to many fluid models with zero
entropy flux such as plasma two-temperature hydrodynamics equations [25], ideal magnetohydrodynamics
[3], certain models of radiation hydrodynamics, elasto-plasticity, etc. Showing that this linear perturbation
approach works in the simple, yet demanding, gas dynamics context indicates that it may also apply to more
sophisticated fluid models.

Through our experience [24,9] and the presented numerical results, it appears that this method is well suited
for handling geometrically perturbed material interfaces separating fluids (eventually governed by different
equations of state). It is a very efficient alternative to 2D/3D calculations (these latter having to be very carefully
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used for such studies [49]). The scheme numerical capabilities have been illustrated on three test cases of increas-
ing difficulty. In the last one it is shown that with such a tool one is able to compute accurately the growth rates of
a small interface perturbation, subject to spherical Richtmyer–Meshkov instabilities, a difficult situation to treat
analytically since the basic flow is highly unsteady and convergence as well as compressibility effects are impor-
tant. We also saw through this test case that multi-dimensional calculations could rapidly become very expen-
sive. In fact both approaches are complementary: linear perturbation computations are restricted to linear
stability analysis while multi-dimensional calculations are mandatory for rendering nonlinear effects.

This approach has also been applied in the ICF context. To do so, a nonlinear diffusion operator has been
added, together with its linearized version. A systematic comparison of results obtained with the LPC and a
direct Lagrangian method has been carried out and has produced very convincing results for the growth rates
of the fuel/shell interface instability in the deceleration phase [43].
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Appendix A. Proofs

A.1. Proof of Proposition 1

The proof of this proposition just uses the chain rule and the following:

Lemma 3. Let ðt; r; h;/Þ ! ðt;R;H;UÞ be defined by (3). Therefore,
rðr;h;/ÞT ¼ jJ j�1~JrðR;H;UÞT ; ð53Þ
where J is defined by (5) and ~J by (8).

This result is straight forward since
rðr;h;/ÞT ¼
oðR;H;UÞ
oðr; h;/Þ

� �t

rðR;H;UÞT ;¼ ðJ�1ÞtrðR;H;UÞT ;
and J�1 ¼ jJ j�1~J t. A noteworthy property of this comatrix is that r � ~J ¼ 0. This can be easily seen using the
definition of the jacobian matrix components and crossed derivatives.

Using definition (7) of the jacobian, we have
otjR;H;U
jJ j ¼ � jJ j

qr2 sin h
otjR;H;U

ðqr2 sin hÞ;

¼ � jJ j
qr2 sin h

otðqr2 sin hÞ þ urorðqr2 sin hÞ þ uhohðqr sin hÞ þ u/o/ðqrÞ
� �

;

¼ jJ j orur þ
1

r
ohuh þ

1

r sin h
o/u/

� �
;¼ jJ jrðr;h;/Þ � v;
where we have used (9) and the mass conservation equation (12a). Therefore,
otjR;H;U
ðjJ jaÞ ¼ aotjR;H;U

jJ j þ jJ jotjR;H;U
a;¼ jJ jarðr;h;/Þ � vþ jJ j otaþ uroraþ

uh

r
ohaþ u/

r sin h
o/a

h i
;

¼ �jJ jrðr;h;/Þ � ðf � avÞ þ jJ js;
Applying (53) to this equation together with the fact that r � ~J ¼ 0 gives the desired result.

A.2. Proof of Proposition 2

The result is immediate since it only requires the application of Proposition 1 to system (12a), except for the
mass conservation equation, where it is applied on the trivial equation otðr2 sin hÞ ¼ 0. Let us see on the second
equation of (12a) how calculations work. We have
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a ¼ r2 sin h � qur;

f ¼ ðr2 sin h � ðqu2
r þ pÞ; r sin h � quh; r � qu/Þt;

(

so that
f � av ¼ ðr2 sin h � p; 0; 0Þt:

Using (7), (11) and the conventional notation ðR;H;UÞ ¼ ð1; 2; 3Þ we get
q0R2 sin Hotur þ
X

i¼R;H;U

oiðr2 sin hJ i1:pÞ ¼ jJ jsr:
Performing same calculations on the other equations and introducing the reduced entropic variables W and the
matrix N yields to the result.

A.3. Proof of the divergence constraint (15)

We only prove this property for the first component on the second line. Computations for other compo-
nents work rigourously on the same template. We have to prove that
Q ¼ oRðr2 sin hðFN �MGÞÞ þ oHð�r2 sin hðBN � CMÞÞ þ oUðr2 sin hðBG� CF ÞÞ � 2r sin hjJ j ¼ 0:
Using the fact that r � ~J ¼ 0 where ~J is defined by (8), we get
Q ¼ ðFN �MGÞoRðr2 sin hÞ � ðBN � CMÞoHðr2 sin hÞ þ ðBG� CF ÞoUðr2 sin hÞ � 2r sin hjJ j;
¼ ðFN �MGÞoRr � ðBN � CMÞoHr þ ðBG� CF ÞoUr � jJ j½ �2r sin h

þ ðFN �MGÞoRh� ðBN � CMÞoHhþ ðBG� CF ÞoUh½ �r2 cos h:
These two terms are zero thanks to (5).
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[45] M. Vandenboomgaerde, C. Mügler, S. Gauthier, Impulsive model for the Richtmyer–Meshkov instability, Phys. Rev. E 58 (2) (1998)

1874–1882.
[46] J.G. Wouchuk, Growth rate of the Richtmyer–Meshkov instability when a rarefaction is reflected, Phys. Plasmas 8 (6) (2001) 2890–

2907.
[47] Y. Yang, Q. Zhang, D.H. Sharp, Small amplitude theory of Richtmyer–Meshkov instability, Phys. Fluids 6 (5) (1994) 1856–1873.
[48] D. Youngs, An interface tracking method for a 3D Eulerian hydrodynamics code. Technical report, AWRE Design Mathematics

Division, 1992. Report AWRE/44/92/35.
[49] S.T. Zalesak, A.J. Schmitt, A.L. Velikovich, J.H. Gardner, Modeling fluid instabilities in inertial confinement fusion hydrodynamics

codes, Phys. Plasmas 12 (2005) 056311.


	A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry
	Introduction
	Lagrangian linear perturbations for the gas dynamics equations in spherical coordinates
	Multi-dimensional Lagrangian formulation of the problem
	Lagrangian spherical coordinates
	Lagrangian form of an arbitrary Eulerian conservation law
	Application to the gas dynamics system

	Lagrangian linear perturbations
	Application to a 1D spherically symmetric basic flow
	Lagrangian equations for the basic flow
	Lagrangian equations for the linearized flow
	Spherical harmonics decomposition


	Numerical schemes
	Numerical scheme for the basic flow
	Numerical scheme for the linearized flow
	Extension to second-order accurate schemes

	Numerical results
	Monodimensional perturbation
	Initial conditions
	Numerical results

	Isentropic implosion of a perturbed shell
	Analytical solution for the basic flow
	Analytical solution for the perturbed flow
	Numerical results

	Richtmyer-Meshkov instability
	Initial conditions
	Numerical results


	Conclusion
	Acknowledgments
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of the divergence constraint (15)

	References


